
DEER - August 24, 2005 1

Common Approach to Obtaining 
Experimental Data for Developing 
Predictive NOx Adsorber Models

Neal Currier, Bill Epling
Cummins, Inc.

Diesel Exhaust 
Emissions Reduction 
Conference



DEER - August 24, 2005 2

Common Approach

Standardize the experimental work required 
to develop/refine models of NOx adsorber
catalyst devices
– Ability to evaluate multiple formulation
– Obtain information that is common across  

multiple suppliers
– Standardize the model development/tuning 

procedures
– Assure completeness of the device 

description
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Goals

• Behavior that needs to be captured
– Functions of 

• Temperature
• Reductant Amount
• Reductant Type
• Flow rate (space velocity)
• NO – NO2 in slip and regeneration products
• Cycle behavior

• Characterize distinct features resulting from complex 
behavior
– Transient nature of the device, engine, controls drive the need to 

truly understand:
• the reaction and surface chemistry in most of its complexity,
• fluid mechanics,
• and heat and mass transfer of the catalyst
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CLEERS LNT Focus Group

Develop protocol for collecting data descriptive of catalyst 
behavior
– Cover a broad operating space
– Cover all major features of the catalyst behavior
– Require only commonly available laboratory equipment
– Require less than two weeks to complete
– Be applicable to a wide variety of catalyst formulations
– Provide data that would, at least, adequately test model 

performance
Not designed to provide mechanistic information
To date – define a minimal data set and the protocol for 

obtaining these data
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The CLEERS Protocol
Run 
No. 

Temp (deg C)+ Gas 
Mix++ 

SV 
(1/hr) 

Lean 
period 
(s) 

Reductant* Regen peak 
(ppm)** 

Regen 
period 
(s)# 

No. of 
cycles 

1 550 1 30,000 0 H2 1,000 900 1 
2 550 2 30,000 60 CO/H2 1.8% 5 30 
3 550 2 30,000 60 CO/H2 0.9% 5 30 
4 550 1 30,000 0 H2 1,000 900 1 
5 463 2 30,000 60 CO/H2 1.8% 5 30 
6 463 2 30,000 60 CO/H2 0.9% 5 30 
7 550 1 30,000 0 H2 1,000 900 1 
8 375 2 30,000 60 CO/H2 1.8% 5 30 
9 375 2 30,000 60 CO/H2 0.9% 5 30 
10 550 1 30,000 0 H2 1,000 900 1 
11 288 2 30,000 60 CO/H2 1.8% 5 30 
12 288 2 30,000 60 CO/H2 0.9% 5 30 
13 550 1 30,000 0 H2 1,000 900 1 
14 200 2 30,000 60 CO/H2 1.8% 5 30 
15 200 2 30,000 60 CO/H2 0.9% 5 30 
16 550 1 30,000 0 H2 1,000 900 1 
17 375 2 15,000 60 CO/H2 1.8% 5 30 
18 550 1 30,000 0 H2 1,000 900 1 
19 375 2 50,000 60 CO/H2 1.8% 5 30 

Short cycle testing –

Describe catalyst 
behavior in an operational 
environment

Long cycle testing –

Describe catalyst 
behavior close to 
saturation

Allow adequate flexibility to cover catalysts designed for different 
applications

Focus on device level behavior – account for non-catalyst features, e.g.
substrate
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Cycle Summaries
• Short Cycle

– Clean the sample at 550°C, H2 reductant, 10 minutes
– Cool to appropriate T
– 60 seconds lean, 5 seconds rich

• Reductant level described as 2X stored NOX, used 2x entering NOX
– 30 cycles at this reductant level
– At end of 30th cycle, switch reductant level to 1x entering NOX
– 30 cycles
– Heat to 550°C, clean

• Long Cycle
– Cleaning – same as short cycle
– Cool to appropriate T
– 15 minutes lean, 10 minutes rich
– Repeat cycles
– Reductant level set at 1000 ppm

• For HC reductant, 1000 ppm H2 equivalent
• OSC measurement
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Expetimental

• Reactor - Cummins’
automated pilot scale 
catalyst reactor

• ~ 1 week to execute the 
protocol 

• Instrumentation -
– FTIR, UEGO, & NOx

sensors
– IR - 2 Hz, sensors - as 

high as 10 Hz
• CLEERS LNT standard 

sample aged at NTRC
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Typical Short Cycle 

22 cycles → SS?
“Pretreated” surface leads 

to different trapping 
profile

200°C

Shows transient 
effects at several 
scales

Reaches stable cycle 
for several cycles
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Non-catalytic Features

Total NOX (NO + NO2)
Total NOX shows change in 

trapping during lean
Temperature wave traverses 

catalyst length (phase shift)
Trapping efficiency or oxidation?

Chemistry of the model 
only works if thermal 
model is right
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N species release sequence
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N2O
NH3
NO (PF)
NO2

• NO2 ~ NO → N2O → NH3 at 200°C (at higher T, difficult 
to resolve differences between NO, NO2 and N2O)

• Is it less NOX, degree of surface reduction; different NOx
storage sites; surface residence time?

200°C Test (all species 
observed)
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Reductant and Space Velocity Effects
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Impact of reductant type 
is clear at low 
temperatures where 
reforming reactions are 
limiting

Impact of space velocity 
is the result of reductant
mass flux

Cycle average changes 
with time
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Long Cycle

• Some integral device 
effects can be probed 
with the long cycle – e.g. 
regen product 
sequencing and split

• With higher NOx
loadings, reductant usage 
is highlighted 

• Differences based on 
reductant and 
temperature
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The Protocol is not Exhaustive 

• 50% more NOx adsorbed with NO2
• Disproportionation mechanism more evident with NO2

– The additional data allows provides more mechanistic 
information – disproportionation, NO2 versus O2 as oxidant

– Would increase experimental cost

NO2 In

TPO

NO In

288°C, Long Cycle 288°C, Long Cycle
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Summary

• A relatively simple suite of testing 
generates a rich set data demonstrating a 
wide range of catalyst device behaviors

• Using only these data for model building 
may be challenging

• These data can be useful for model tuning 
and validation

• Lab to lab repeatability remains to be 
established
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